M1. (a) g.p.e. $=$ mass $\times$ gravitational field strength $\times$ height accept $E_{p}=m g h$
(b) $E_{p}=50 \times 9.8 \times 20$
allow 9800 (J) with no working shown for 2 marks answer may also be correctly calculated using $W=F s$ ie allow $W=490 \times 20$ for 1 mark or answer of 9800 (J) using this method for 2 marks
(c) $7840(\mathrm{~J})$
allow ecf from '11.2’
(d) $7840=1 / 2 \times 50 \times \mathrm{v}^{2}$

$$
\begin{aligned}
& v=\sqrt{\frac{7840}{1 / 2 \times 50}} \\
& \quad v^{2}=\frac{7840}{(1 / 2 \times 50)} \text { for this point }
\end{aligned}
$$

> allow ecf from ' 11.3 ' correctly calculated for $\mathbf{3}$ marks allow $18(\mathrm{~m} / \mathrm{s})$ with no working for 2 marks answer may also be correctly calculated using $v^{2}-u^{2}=2$ as
(e) extension $=35(\mathrm{~m})$ and conversion of 24.5 kJ to 24500 J

$$
24500=1 / 2 \times \mathrm{k} \times 35^{2}
$$

allow 40 with no working shown for 3 marks an answer of '16.2' gains $\mathbf{2}$ marks

M2. (a) any evidence of: momentum $=$ mass $\times$ velocity (words, symbols or numbers) appropriate re-arrangement mass as 0.05 kg

## Page 3

each gains 1 mark
but 800
gains 4 marks
(b) (i) any reference to friction with air/air resistance gains 1 mark
but idea that friction with air/air resistance is high (at high speed)
gains 2 marks
(ii) any evidence of: k.e. $\propto^{\mathrm{v}} \mathrm{v}^{2}$ or k.e. $=1 / 2 \mathrm{mv}^{2}$ final k.e. initial k.e. either initial or final k.e. correctly calculated (i.e. 16000; 10240) each gains 1 mark
but (0.8) ${ }^{2}$
gains 3 marks
but 64\%(credit 0.64)
gains 4 marks (also credit e.c.f)

M3. (a) product of mass and velocity
(b) (i) 4 kg or 4000 g
(ii) $\quad \mathrm{M}=8 \mathrm{kgm} / \mathrm{s}$ or Ns for 3 marks else $M=8$ for 2 marks else $M-m v$ or $4 \times 2$ for 1 mark
(iii) $8 \mathrm{kgm} / \mathrm{s}$ (watch e.c.f.)
(iv) $v=400$
for 3 marks
else $v=8 / 0.02$
for 2 marks
else $M-\mathrm{mv}, \mathrm{v}-\mathrm{M} / \mathrm{m}$ or $8=0.02 \mathrm{v}$
for 1 mark
(v) $\mathrm{ke}=8$
for 3 marks
else ke $=1 / 2\left(4 \times 2^{2}\right)$
for 2 marks
else ke $=1 / 2\left(m v^{2}\right)$
for 1 mark
(vi) transferred to heat and sound or does work against wood/pushing wood aside/deforming bullet

M4. (a) 13500 (J)

## allow 1 mark for correct substitution, ie $90 \times 10 \times 15$ provided no subsequent step shown

(b) $17 \mathrm{or} \sqrt{\frac{\text { their }(\mathrm{a})}{45}}$
correctly calculated and answer given to 2 or 3 significant figures accept 17.3
allow 2 marks for an answer with 4 or more significant figures, ie 17.32
or
allow 2 marks for correct substitution, ie 13500 / their (a) $=1 / 2$ $x 90 \times v^{2}$
or
allow 1 mark for a statement or figures showing KE = GPE
(c) work is done
(against) friction (between the miner and slide) accept 'air resistance' or 'drag' for friction
(due to the) slide not (being perfectly) smooth accept miners clothing is rough
or
causing (kinetic) energy to be transferred as heat/internal energy of surroundings accept lost/transformed for transferred accept air for internal energy of surroundings

